Inverse Designed THz Spectral Splitters

Sourangsu Banerji, Yu Shi, Vivian Song-En Su, Udayan Ghosh, Jacqueline Cooke, Student Member, IEEE, Yong Lin Kong, Member, IEEE, Lei Liu, and Berardi Sensale-Rodriguez, Senior Member, IEEE

Abstract—This letter reports proof-of-principle demonstration of 3D printable, low-cost, and compact THz spectral splitters based on diffractive optical elements (DOEs) designed to disperse incident collimated broadband THz radiation (0.5 THz - 0.7 THz) at a pre-specified distance. Via inverse design, we show that it is possible to design a diffractive optic, which can split broadband incident spectrum in any desired fashion, as is evidenced from both FDTD simulations and measured intensity profiles using a 500-750 GHz VNA. Due to its straightforward as well as simple construction without the usage of movable parts, our approach, in principle, can have various applications such as in portable, low-cost spectroscopy as well as in wireless THz communication systems as a THz demultiplexer.

Index Terms—Inverse design, spectral splitter, diffractive optics

I. INTRODUCTION

Spectrometers are widely used in optical characterization, chemical analysis, etc. [1, 2]. Traditional spectrometers harness gratings (typically one for each blazing wavelength or multi-orders) or prisms, coupled with other mechanical and electronic parts, to disperse and detect the incident spectrum [1]. The necessity to assemble multiple components within a single system renders them bulky, sensitive to alignment, and suffering from low throughput due to cross talk. Hence, they are not the optimal choices for broad commercial and industrial applications, where small footprint and simple hardware are required [2]. From such a perspective, coded apertures have been previously developed to construct compact computational spectrometers over both visible [3, 4] and infrared [5] regimes. However, such an approach is limited to narrow spectral bands and sensitive to noise.

Nonetheless, from a computational perspective, we can show that a single broadband diffractive optic can be inverse designed via numerical optimization of the structure’s surface topology to split the incident broadband radiation under arbitrary splitting conditions. This inverse design formulation is employed extensively in digital holography [6-10], where a hologram is designed to project a pre-defined intensity pattern allowing the phase in the image plane to be arbitrary, i.e., "phase as a free parameter" [11].

In previous work, we have numerically demonstrated that designing splitters to split incident broadband THz radiation spatially is possible [12, 13]. In this letter, we extend this to experimentally demonstrate four spectral splitters with the help of geometric optimization of heights of each individual element ("pixel") within the diffractive optic for a broadband THz spectrum, i.e., from 0.5 to 0.7 THz. Unlike conventional structures, such as gratings, the splitters described in this work can arbitrarily disperse at pre-defined arbitrary spatial locations. The use of 3D printing renders a simple and cost-effective solution as evidenced from previous diffractive structures shown in [14, 15].

II. METHODS

A. Design

From a fundamental standpoint, the idea behind designing a splitter structure (Fig. 1(a)) is related to inverse scattering. Therefore, optimization is a suitable approach for choosing an appropriate surface topography to attain desired functionality. Details of the optimization technique employed here, which is based on a gradient descent assisted binary search have been provided in our earlier works [12, 13, 16, 17]. Regardless of the particular algorithm employed for optimization, the two key metrics which guide the inverse design are (1) choice of an appropriate target function during the initiation of the optimization algorithm, and (2) suitable Figure of Merit (FoM) function to enable a convergent solution. In this work, the target function (T) was defined as a gaussian function with full-width-at-half-maximum (FWHM), W_f, determined by the far-field diffraction limit. That is:

$$T_i(x') = \exp \left\{ -\frac{(x' - x'_i)^2}{2W_f^2} \right\}$$ (1)

where x' denotes spatial position and x'_i denotes the spatial location at which intensity peaks in the observation plane for each frequency sample. The FoM was defined as:

$$\text{FoM} = \frac{\sum_{i=1}^{N} \theta_i}{N} - 10 \frac{\sum_{i=1}^{N} \theta_i \phi_i}{N}$$ (2)

where the first and the second term in eqn. (2) describe the average weighted efficiency θ_i and the weighted normalized absolute difference ϕ_i over N wavelength samples written as:

$$\theta_i = \frac{\int_{x_{\text{min}}}^{x_{\text{max}}} I_i(x)T_i(x') dx'}{\int_{x_{\text{min}}}^{x_{\text{max}}} I_{\text{min}}(x) dx'}$$ (3)
The term $I_i(x')$ denotes the simulated intensity distribution function, and $T_i(x')$ is the designated target function for the ith frequency sample. x'_{\min} and x'_{\max} are the limits of integration spanning from the leftmost to the rightmost in these structures. ω_i denotes the weighting coefficient which was fixed at 0.99 in the designed structures. The optimization and simulation of the structures were done using custom-made MATLAB code and Lumerical FDTD solutions, respectively.

The dimension of the splitter was taken to be 40 mm by 40 mm in length and width respectively. The structure consisted of multilevel pixels having maximum thickness $h_{\text{max}} = 2000 \mu\text{m}$, minimum thickness $h_{\text{min}} = 200 \mu\text{m}$, and height level step $\Delta h = 200 \mu\text{m}$; which sets the number of distinct height levels (P) to $P = 10$. The pixels have a width $w = 400 \mu\text{m}$; which sets the number of pixels, i.e., $N = 200$. The THz spectral splitters were designed to split the incident broadband radiation at a distance $d = [35 \text{ mm}, 50 \text{ mm}]$. In total, four different spectral splitters were designed to portray the robust and dynamic splitting capability of our inverse designed based formulation. Fig. 1(b-e) depicts the pixel height profile along with relevant geometric dimensions for all the designs.

![Image](54x261 to 292x450)

Fig. 1. (a) Schematic of the spectral splitter with a splitting distance $d = [35 \text{ cm}, 50 \text{ cm}]$ under broadband illumination ($\lambda_1 = 0.6 \text{ mm} [0.5 \text{ THz}], \lambda_2 = 0.5 \text{ mm} [0.6 \text{ THz}], \lambda_3 = 0.4 \text{ mm} [0.7 \text{ THz}]$). The designed structure splits the incoming THz wave into a series of spatially separated lines at the pre-specified design distance. (b-e) Pixel height distribution for the spectral splitter with a maximum pixel height of 2 mm. The dimensions (length and width) of the spectral splitter were 40 mm. (f) Optical micrograph of a fabricated sample.

Polylactic Acid (PLA) was taken as the design material for the splitters. Refractive index and extinction coefficient were taken based on the values measured in our previous work [18]. Other materials like polystyrene have overall lower absorption in this frequency range [19] but are not 3D printable at our current facilities.

B. Fabrication

A 3D CAD model of THz spectral was first created with optimized pixel height and the model was 3D printed (Ultimaker 3) with PLA filament as shown in Fig. 1(f).

C. Measurement

The spectral splitter was experimentally characterized in a free space quasi-optical THz measurement system (as shown in Fig.2), including an Agilent N5245A Vector Network Analyzer (VNA) with two WR-1.5 bands (500–750 GHz) frequency extenders. The two ports were first calibrated using Short-Open-Load-Through (SOLT) technique before the free space measurements. For the purpose of this measurement, the incident electromagnetic wave (EM) was generated by port 1 of the VNA and provided through a WR-1.5 diagonal horn antenna (provided by Virginia Diodes, Inc.). The E-plane of the antenna was aligned with y-z plane of the splitter (see Fig. 1(a)), in accordance with simulation. The THz beam, which was collimated by an off-axis parabolic mirror (focal length $f = 8.8 \text{ cm}$), can then be approximately treated as a plane wave. The beam waist (w_0) was measured to be 31.5 mm (radius) after the parabolic mirror so that the incoming THz beam can illuminate the entire sample area (40 mm × 40 mm). An absorber was placed around the sample to minimize the interference by shielding the surrounding EM wave. The S-parameters were then measured along the observation plane at a distance "d" from the sample and the corresponding transmitted power was collected. The amplitudes of the transmitted power spectrum were obtained directly from raw measurements and then normalized to the peak value of each beam at designed frequency (i.e., 0.5, 0.6, and 0.7 THz). For samples 1 and 2, the transmitted power spectrum was obtained at $d = 35 \text{ cm}$, whereas d becomes 50 cm for samples 3 and 4.

III. RESULTS AND DISCUSSION

Fig. 3(a-b) and Fig. 4(a-b) respectively depict the simulated and measured spectral maps of two spectral splitters which were designed to split incident THz frequencies in a regular sequence (gradual split) across the observation plane at a predetermined distance of 35 cm and 50 cm for the designed frequencies of 0.5 THz, 0.6 THz, and 0.7 THz. In addition to this, Fig. 3(c-d) and Fig. 4(c-d) portrays the simulated and measured spectral maps of a separate set of two more spectral splitter designs which were designed to split the same incident THz radiation in an arbitrary sequence (random split) across the observation plane at a pre-determined distance of 35 cm (Fig. 3(c-d)) and 50 cm (Fig. 4(c-d)) subsequently. In general, from the spectral plots of both Fig. 3 and Fig. 4, it is evident that the split does happen even though the exact spatial location might be a bit off in the measured spectral profile. This can be attributed to the following: under alike geometric conditions, spectral resolution offered by the non-regular-sequence design tends to be higher than that by the design with regular spectral split due to the spectral correlation function. In principle, the spectral correlation function measures how similar the diffraction patterns are at two distinct wavelengths. For regular-sequence spectral splitter designs, the spatial-spectral map changes relatively smoothly in contrast to that of a random design, which often experiences abrupt variations. Therefore, the correlation function for
random designs becomes narrower, which makes it easier to distinguish between frequencies. These observations are consistent with those of earlier works reported in the literature for such diffractive optic-based splitter designed at optical frequencies [20-22].

Fig. 2. (a) Schematic and (b) the experimental setup used to characterize the THz spectral splitters.

However, here an important observation can be made. The splitter designs, which had a random non-monotonic split of the incident THz frequencies, depicted relatively better performance than their regular-sequence counterparts. In general, sample 2 and sample 4 have a clean spectral map with suppressed side lobes with respect to both sample 1 and sample 3. In fact, one can observe that sample 2 has the best split performance amongst all the four designs.

Fig. 3. Spectral splitter designs for a gradual split (Sample 1 and Sample 2) with (a) simulated and (b) measured spectral map at a splitting distance $d = 50$ cm under broadband illumination ($\lambda_1 = 0.6$ mm [0.5 THz], $\lambda_2 = 0.5$ mm [0.6 THz], and $\lambda_3 = 0.4$ mm [0.7 THz]). The corresponding spectral splitter designs for a random split (c) simulated and (d) measured spectral map at a splitting distance $d = 50$ cm under broadband illumination ($\lambda_1 = 0.5$ mm [0.6 THz], $\lambda_2 = 0.6$ mm [0.5 THz], and $\lambda_3 = 0.4$ mm [0.7 THz]).

In addition to the spectral map, the amplitude of the THz beam, and hence the loss performance of the splitter was analyzed. The raw data showed that the amplitudes of the diffractive beams vary in different measurements, but the loss of the proposed splitter, which is mainly from the dielectric loss of the material with a complex refractive index, was estimated to be around 12 dB in all cases. Although this loss is relatively larger than that reported in some other works, e.g. [23-24], our results demonstrate the effectiveness of the proposed design principle with a freeform fabrication approach using 3D printing. In the future, the loss can be lowered by employing materials with lower absorption (e.g., polystyrene).

Fig. 4. Spectral splitter designs for a gradual split (Sample 3 and Sample 4) with (a) simulated and (b) measured spectral map at a splitting distance $d = 50$ cm under broadband illumination ($\lambda_1 = 0.6$ mm [0.5 THz], $\lambda_2 = 0.5$ mm [0.6 THz], and $\lambda_3 = 0.4$ mm [0.7 THz]). The corresponding spectral splitter designs for a random split (c) simulated and (d) measured spectral map at a splitting distance $d = 50$ cm under broadband illumination ($\lambda_1 = 0.5$ mm [0.6 THz], $\lambda_2 = 0.6$ mm [0.5 THz], and $\lambda_3 = 0.4$ mm [0.7 THz]).

Finally, the appearance of substantial side lobes in the measured results can be attributed to two reasons: (a) an imperfection in fabrication due to the inherent limitation of 3D printing (resolution ~ 20 µm in $[z]$ and ~ 400 µm in $[x,y]$); and (b) an imperfection in the measurement setup. A theoretical statistical study was already conducted on a very similar structure, i.e., a multilevel diffractive lens in [17] to showcase how the performance of the multilevel structure degrades with the inherent imperfection of fabrication, i.e., error in height and width of each pixel as well as density variations leading to index non-uniformities; and hence a detailed discussion is omitted here. From the measurement perspective, the receiver VNA extender was manually moved along the desired plane which will introduce additional misalignment errors. Besides, the receiver WR1.5 horn antenna is not a perfect point detector. Instead, its radiation pattern is also a Gaussian beam with certain beam width and substantial side lobes, which may broaden the main lobe and introduce side lobes in the measurements.

In conclusion, we have demonstrated compact THz spectral splitters via inverse design which is capable of splitting incident broadband THz waves in free space with appreciable accuracy. Barring the challenges associated with the current state-of-the-art 3D printing technology and the usage of better measurement facilities, this simple straightforward proof-of-concept demonstration of such spectral splitters evidences the fact that the proposed structures can be crucial in enabling portable, low-cost spectrometers as well as in wireless communications as THz demultiplexers.

CONCLUSION

In conclusion, we have demonstrated compact THz spectral splitters via inverse design which is capable of splitting incident broadband THz waves in free space with appreciable accuracy. Barring the challenges associated with the current state-of-the-art 3D printing technology and the usage of better measurement facilities, this simple straightforward proof-of-concept demonstration of such spectral splitters evidences the fact that the proposed structures can be crucial in enabling portable, low-cost spectrometers as well as in wireless communications as THz demultiplexers.
REFERENCES