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1. Introduction

Electronics and robots can address a broad range of unmet clini-
cal needs, from probing previously inaccessible regions of the
human body to assisting in complex surgical processes.[1–3]

Many biomedical robots have been devel-
oped for use at the microscale in various
scenarios, including for noninvasive
surgery[4–6] and targeted therapies.[7–9]

Mobile, microscale robots (“microbots”)
are typically designed to perform a specific
gait in a specific environment.[7] However,
the physical properties of biological fluids,
tissues, and structures vary signifi-
cantly,[10–12] and biological environments
are often both dynamic and uncertain.
For example, a gait designed for an ingest-
ible robot to perform in one environment
may not be effective in another. In addition
to challenges in localization,[13] the com-
plexity and uncertainty of biological envi-
ronments are also challenging to
model. Robots controlled via conventional
control methods (e.g., proportional–
integral–derivative control) often are inca-
pable of effective locomotion in these
dynamic environments.

As an alternative control method, rein-
forcement learning, can impart robots with
the ability to discover effective behavior

based on their interactions with the unknown environment.
Reinforcement learning is thus an advantageous control method
in biomedical applications because it can reduce modeling and
sensing requirements and enable robots to adapt to environmen-
tal changes. Reinforcement learning has been used for gait opti-
mization in crawling robots to discover movement policies for
traversing various substrates or confined spaces using
complex legged and wheeled robots.[14–20] Previous works of
reinforcement-learning microbots have included hexapod micro-
bots with adaptable gait policies,[14,15] controllable swarms of
optical tweezer robots,[21] microscale biomedical robots,[7,22–24]

and adaptive industrial inspection robots.[18–20]

In addition to being complex, dynamic, and uncertain, most
biological environments are also confined. For example,
robot-assisted endoscopy in the gastrointestinal system requires
a robot not only to be able to perform functional tasks but also to
fit and navigate effectively in a confined space. However, the cur-
rently demonstrated reinforcement-learning robots are based on
complex designs that are inherently challenging to scale for effec-
tive navigation in confined space.[25,26] Recent advances in 3D
printing can increase the functional capacity and density of med-
ical electronics and robots[27–29] to enable navigation in a con-
fined space.
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Reinforcement learning control methods can impart robots with the ability to
discover effective behavior, reducing their modeling and sensing requirements,
and enabling their ability to adapt to environmental changes. However, it remains
challenging for a robot to achieve navigation in confined and dynamic envi-
ronments, which are characteristic of a broad range of biomedical applications,
such as endoscopy with ingestible electronics. Herein, a compact, 3D-printed
three-linked-sphere robot synergistically integrated with a reinforcement learning
algorithm that can perform adaptable, autonomous crawling in a confined
channel is demonstrated. The scalable robot consists of three equally sized
spheres that are linearly coupled, in which the extension and contraction in
specific sequences dictate its navigation. The ability to achieve bidirectional
locomotion across frictional surfaces in open and confined spaces without prior
knowledge of the environment is also demonstrated. The synergistic integration
of a highly scalable robotic apparatus and the model-free reinforcement learning
control strategy can enable autonomous navigation in a broad range of dynamic
and confined environments. This capability can enable sensing, imaging, and
surgical processes in previously inaccessible confined environments in the
human body.
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In this work, we integrate an untethered and compact
3D-printed three-linked-sphere robot with a model-free
reinforcement-learning algorithm (Figure 1). Specifically, our
work is the first experimental integration of the theoretical
Najafi–Golestanian three-linked-sphere mechanism with a
reinforcement-learning algorithm as a highly scalable and rela-
tively simple self-learning robot that can navigate in confined
spaces. The algorithm used in this study is based on a standard
Q-learning algorithm,[30,31] which is a reinforcement-learning algo-
rithm that can enable self-learning behavior without a model.[32–34]

First described by Najafi and Golestanian, the three-
linked-sphere robot is one of the most basic architectures capable
of performing nonreciprocal swimming gaits, which is essential
for overcoming the challenge of swimming at low Reynolds
numbers.[35] However, gaits that are optimal for locomotion in
one medium may become largely ineffective in a different
medium. Therefore, the ability to adapt the gaits based on envi-
ronmental changes is crucial for locomotion in complex, varying
environments.[36] The Najafi–Golestanian gait’s effectiveness for
crawling on a frictional surface is first probed by programming
the robot to execute this known policy. Reinforcement learning is
then exploited to enable the robot to adapt its gaits based on its
interactions with the frictional surface.

Utilizing a three-linked-sphere robot is desirable for biomedi-
cal applications because its form and motion are compact and
inherently scalable. The robot’s body consists of three equally
sized spheres linearly coupled by two prismatic joints.
Extending or contracting the joints in specific sequences allows
the robot to achieve locomotion. In contrast to prior
works—which require complex mechanisms such as 12-
degree-of-freedom (DOF) quadrupeds,[17] 12-DOF[15] and 18-
DOF[14,37] hexapods, multiple DOF segmented rectilinear[16] or
wheeled[18] robots for locomotion that are challenging to minia-
turize for use in a confined space—our work focuses on a highly

simplified and scalable mechanism that enables locomotion in a
confined space.

In principle, the robot can be readily rescaled while preserving
its architecture. Within the millimeter regime of dry friction crawl-
ing, the robot’s size is not expected to affect the crawling motion.
In contrast to prior work that requires complex gait mechanisms,
the locomotion of the three-linked-sphere robot is enabled by an
imbalance of resistive dry surface forces (Coulomb friction, elec-
trostatic, Van der Waals) on either side of the extending or con-
tracting links. In this work, as our goal is a proof-of-concept
demonstration, we have chosen a length scale that allows us to
leverage commercial off-the-shelf (COTS) electronics components.
Our results obtained from this work are scalable to the future tar-
get length scale. The integration of smaller electronics is feasible
but is beyond the scope of the current work.

The 3D-printed robot’s motion is controlled using a model-
free reinforcement-learning control strategy called Q-learning.
Using Q-learning, the robot identifies favorable gait policies
by alternating between states, monitoring the corresponding dis-
placement changes using remote visual sensing, and rewarding
favorable motions based on a user-determined reward function.
Q-learning is versatile and can be applied to any robot whose
movement can be described by discrete states. The two joints’
discrete extension and contraction yield 4 geometry configura-
tions (states), shown in Figure 2, and 12 state-action pairs.
The advantage of the design is that the robot can be easily
expanded to the n-linked-sphere crawler[36,38] and the Parking
three-linked-sphere crawler robots[39,40] to achieve more complex
movements. One of the key limitations in our approach is that
with increasing complexity, the length of the adaptation period is
exponential. Nevertheless, in future work, the adaptation period
could possibly be reduced by first training the swimmer in a
simulation and then using the trained result in a real
environment.

Figure 1. Untethered crawler robot integrated with a reinforcement-learning algorithm. A) The architecture of an untethered, three-linked-sphere robot
that is internally powered with extendable linear actuators. B) Experimental setup for closed-loop reinforcement-learning control where the position
tracking is achieved with an overhead camera and connected with a computer wirelessly over Bluetooth. C) Colored circles on the spheres are used
to track positions (white cross overlays, placed by the visual tracking algorithm) and the center of mass (yellow and black Secchi disks).
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In this study, we focus on a three-linked-sphere robot because
of its simplicity, which can enable subsequent miniaturization in
future designs. Its simplicity, as well as its scalability, is attractive
for future biomedical applications. Experiments are performed to
demonstrate that, using reinforcement learning, the three-
linked-sphere robot is capable of adaptable, autonomous crawl-
ing in both open space and a confined channel.

In principle, our current proof-of-concept demonstration is
also applicable to a robot created using alternative fabrication
approaches (e.g., molding and subtractive manufacturing). In this
example, 3D printing was used to fabricate several robot parts
because: 1) most of the freeform components (e.g., spherical
chassis, arm-coupling mechanism) would be challenging to fab-
ricate via other approaches such as molding. 2) 3D printing allows
us to control mechanical properties, such as surface friction (e.g.,
by tailoring the microfeatures on the surface), which is the fun-
damental driving mechanism of the three-linked-sphere robot. In
future work, the freeform fabrication approach with 3D printing
can enable a highly scalable, freeform integration with the advan-
ces of 3D-printed electronics[27–29,41,42] or achieve a hybrid elec-
tronic integration approach by leveraging pick-and-place.[43]

Overall, in comparison to conventional processes such as mold-
ing, the freeform fabrication capability of 3D printing can enable a
scalable fabrication methodology (within the limitation of the fab-
rication tool) and higher functional integration, which can better
leverage the scalability of the three-linked sphere robot.

2. Experimental Results

2.1. Gait Adaptation

Gait adaptation was analyzed by comparing the difference in dis-
placement, state sequence (strokes), and Q values between two sets
of experiments: a learning robot controlled via reinforcement learn-
ing and a nonlearning robot that continuously performed a preset gait
(stroke sequence). The nonlearning robot was programmed to per-
form the Najafi–Golestanian stroke[35] (N─G stroke) that has previ-
ously been shown to enable locomotion in low-Reynolds-number
fluids. The robots were placed on a horizontal frictional surface
and traveled in one dimension (left to right). To simulate a transi-
tion in the environment and allow the Q-learning algorithm
(Equation (1)) to make decisions, the learning robot was directed
to begin using the N─G stroke and was influenced to continue this
stroke through artificial positive rewards for the first 20 steps
(n¼�20 to 0). At step n¼ 0, the Q-learning algorithm was allowed
to make decisions in the learning robot. Thus, after step n¼ 0, the
learning robot explored other state actions and adapted its move-
ment policy in �54 steps to a productive stroke sequence and
achieved a mean normalized velocity Vm¼ 0.25 d dL�1 n�1.
However, in the frictional surface environment, the N─G stroke
was incapable of forward locomotion; the nonlearning robot
remained at the starting location for the duration of the experiment
(see Figure 2 and Movie S1, Supplementary Information).

Figure 2. Gait adaption of the three-linked-sphere robots via Q-learning. A) The robots were first initialized with N─G strokes (n¼�20 to 0). The
reinforcement learning was turned on for the learning robot (RL) at n¼ 0, which was compared with a nonlearning robot (NL). The learning robot
(blue) began to move using an F-stroke policy at n¼ 17 steps and achieved a mean velocity of 0.25 d dL�1 n�1. The learning robot fully learned the
F-stroke policy in n¼ 54 steps. In contrast, the nonlearning robot (red) remained in the N─G stroke, and therefore its center of mass has no net
displacement. The robot is considered to have learned a movement policy when the corresponding set of Q values remain higher than all other sets
for n≥ 48 steps. Policy adaptation is marked at the beginning of this period. The inset figure contains an enlarged view of a section of the learning robot’s
displacement from n¼ 75 to 85. The color bars below the chart show the gait of the robot as described in part (B). Colored underlines indicate gait
patterns, namely, the N─G stroke (orange) and the F-stroke (first variant green and second variant blue). B) Schematics of the robot states and archetypal
strokes, color coded to match the state sequences in part (A).
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2.2. Goal Adaptation

Goal adaptation was analyzed by performing experiments similar
to the learning robot experiment described earlier, with the addi-
tion of a reward modification at step n¼ 150. To simulate a goal
change, the reward function was modified from rewarding posi-
tive displacement to negative displacement. During the period of
n¼ 0–149, the reward was calculated by Equation (2). The adap-
tation period was n¼ 62.3 steps. During the period of n¼
150–300, the reward was calculated by Equation (3). After the
change in reward, the robot ceased performing the F-stroke pol-
icy within �3 steps. The adaptation period was n¼ 24.6 steps. At
step n¼ 161 (11 steps after the reward change), the robot began
moving backward, nearly returning to its original position after
150 steps (see Figure 3 and Movie S2, Supporting Information).

2.3. Goal Adaptation in Confined Environment

The robot’s ability to navigate in confined environments was
examined by performing an experiment similar to the aforemen-
tioned goal-adaptation experiment, with the robot instead being
placed inside a clear acrylic tube. The algorithm parameters used
in this experiment were identical to the open-surface goal adap-
tation experiment. During testing, a small amount of slippage,
which caused an �2% reduction in velocity, was observed. In
the first half (n¼ 0–150), the robot did not fully adapt within
150 steps (see Figure 4 and Movie S3, S4, Supplementary
Information). After the reward was reversed (at step n¼ 150),
the robot learned the reverse F-stroke in n¼ 17.4 steps.

3. Discussion

In this work, several experiments were performed to demon-
strate the robot’s ability to 1) adapt movement policy; 2) adapt

to goal changes; and 3) adapt to policy and goal changes in a con-
fined environment. In each of the experiments, reinforcement
learning allowed the learning robot to learn a productive stroke
sequence in �54 steps without prior knowledge of the environ-
ment. However, even before fully adapting its movement policy,
the robot began to make steady forward progress after just 16
steps. Comparing the rates of normalized displacement over
many steps, the learning robot achieved �90% efficiency com-
pared to a previously optimized crawler while maintaining
adaptability.

The ability of reinforcement learning to adapt the robot’s gait
from an unproductive N─G stroke to a productive F-stroke can be
seen by comparing the displacement curves between the learning
and nonlearning robots in Figure 2a. The learning robot identi-
fied two variations of the F-stroke, both used by the robot in this
and other experiments. The first F-stroke variant consists of the
three-state sequence LCRE–LERC–LCRC (L: left link, R: right
link, C: contracted, E: extended). The second variant is similar
to the first, with an LERE substituted for the third state. Due
to symmetry in displacement when performing the two F-stroke
variants’ final actions, both the immediate and long-term
rewards are identical. Thus, the robot is likely to favor both
equally, barring any mechanical irregularities. Over many hours
of experiments, the robot’s preference of one variant over the
other can vary due to mechanical irregularities causing a slight
imbalance in the stroke length (��0.48mm) and actuation
speed between the two joints (see Figure 2,3,4). The representa-
tive experiments shown in the figures are cases where the robot
settled on the second variant of the F-stroke.

The relationship between the robot’s state sequence and the
center-of-mass displacement is shown in the plot inset to
Figure 2a. The inset plot shows that the state progression
LERE–LCRC (n¼ 77–78) produced no net displacement,
whereas LCRE–LCRC (n¼ 79–80) produced negative displace-
ment, causing the robot to backtrack, and the sequence

Figure 3. Reinforcement learning and adaptation during goal adjustment of the three-linked-sphere robots. A) The robot can unlearn a reinforced pattern
(F-stroke) and learn a new stroke pattern when the goal is adjusted. Specifically, the reward was reversed at step n¼ 150, and following the definition set
in Figure 2, the robot learned to reverse its F-stroke with adaptation steps of n¼ 24.6, as shown in the solid blue region. The increased experimentation
time allowed the robot to adapt faster to the goal adjustment at n¼ 150 than it did at n¼ 0, which had a policy adaptation period of 62.3 steps. B) During
the forward reward period, the robot traveled left to right on the substrate. During the reverse reward period, the robot traveled right to left.
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LCRE–LERC–LCRC (n¼ 81–83) produced a net positive dis-
placement. The small plateaus in displacement located at the
end of each step are where the robot briefly rested before the
following command.

After demonstrating gait adaptation in response to displace-
ment-driven rewards, the next set of experiments demonstrated
the user’s ability to modify robot behavior through goal-driven
control. Unlike optimal control, which directly controls the posi-
tion or effort of a system, reinforcement learning can be used to
indirectly guide the robot through positive reinforcement. In the
second set of experiments (shown in Figure 3), the robot exhib-
ited bidirectional motion as the 1D reward was modified from
awarding positive to negative displacement. As evident in
Figure 3a, the displacement and state sequence on either side
of the reward reversal line (n¼ 150) show the policy adaptation
to the goal adjustment. The robot ceased its left-to-right trajectory
and learned to move right to left. During the second half of the
goal adaptation experiments (n¼ 150–300), the robot adapted
more quickly to a single policy (within �17–25 steps), compared
to �54–62 steps during the first haft (n¼ 0–150), indicating that
the speed of the learning behavior is improved when the robot
has identified policies, even if those policies are disadvantageous.
After n¼ 172, the robot exhibited fewer fluctuations between
F-stroke variants, which is most likely due to the increased

number of steps allowing the learning algorithm to further rein-
force a single policy.

The concept of controlling robot behavior via goal manipula-
tion could be extended beyond the 1D reward change imple-
mented in this work. For example, after updating the robot
design, movement in additional dimensions such as 2D planar
movement and turning motions could be incentivized with dif-
ferent goals. Similarly, robot configuration and behaviors, such
as maintaining a compact body or optimizing efficiency, could
also be incentivized. Directing the robot’s motion via goal manip-
ulation is advantageous because it allows the operator to provide
real-time guidance without requiring manual supervised control
of the robot’s behavior, thus allowing the robot to autonomously
adapt its motion toward its goal (e.g., locomotion toward a target)
even in a dynamic environment.

4. Conclusion

This work presents a 3D-printed three-linked-sphere robot that,
using reinforcement learning, was able to identify favorable gait
policies and adapt to goal changes within a confined space.
Experimental results show the robot could identify favorable
stroke sequences for bidirectional locomotion across frictional

Figure 4. A compact body and robust self-learning behavior allow the robot to navigate through a confined space. A) The robot with an outer diameter of
64mm was confined to a clear acrylic tube with an inner diameter of 70 mm. The robot’s compact, spherical cross-section and simple push–pull loco-
motion allow it to navigate through the tube as quickly as the horizontal surface. B) Despite the confinement and the small (�2%) sliding action, the robot
demonstrated the ability to learn to move toward the goal. Similar to the results shown in Figure 3, the robot adapted to the reversal of reward direction
with a policy adaptation period of n¼ 17.4 steps. However, the robot could not achieve our standard for adaptation (n≥ 48 consecutive steps of an
exclusive policy) within the initial 150 steps. C) During the forward reward period (n¼ 0–149), the robot traveled left to right inside the tube. During the
reverse reward period (n¼ 150–300), the robot traveled right to left.
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surfaces in open and confined spaces without previous knowl-
edge of the environment or optimal movement policy.
Further, these experiments verify previous theoretical and simu-
lation models of the crawling motion of three-linked-sphere
robots and offer potential insights into the applicability of the
general design and control strategy in a variety of environments.

Experiments were performed to demonstrate the robot’s abil-
ity to learn effective gait policies and adapt to goal adjustments
across open surfaces and confined spaces. First, gait policy adap-
tation in 1D motion was confirmed by comparing a learning
robot’s and nonlearning robot’s motion. The experiment simu-
lated a change in the environment by programming the learning
robot to use the N─G stroke for the first 20 steps, which is opti-
mized for swimming in low Reynolds numbers and is ineffective
for crawling. The reinforcement-learning reward function was
then altered to reward positive displacement. Results showed
the learning robot adapted its gait policy and identified two
F-stroke variations to move forward, whereas the nonlearning
robot was unable to adapt or achieve net displacement using
the preprogrammed N─G stroke. Reinforcement learning also
allowed the robot to maintain flexibility in its movement policies
while preserving �90% efficiency compared to an optimized,
nonlearning frictional crawler.

Next, goal adaptation was demonstrated by reversing the
reinforcement-learning reward function to reward backward
displacement and observing the robot’s corresponding motion
reversal. This experiment demonstrates the ability to control
robot motion indirectly using reward function modification,
which may be advantageous compared to direct control methods.
After reward reversal, it was observed that the robot adapted
more quickly to achieve favorable locomotion, which was likely
due to the reinforcement-learning algorithm improving the accu-
racy of the Q values over time.

After demonstrating gait adaptation and control via goal
manipulation across horizontal surfaces, experiments were per-
formed in a cylinder to simulate a confined environment. As was
demonstrated across horizontal surfaces, the learning robot was
able to adapt its movement policy and identify the two F-stroke
variations in a confined space to achieve net forward displace-
ment and adapt to the goal changes to achieve bidirectional loco-
motion. Though a small amount of slippage was observed in the
confined experiments, the robustness of the reinforcement-
learning control enabled the robot to perform similarly in the
cylinder as it had on the horizontal surface.

In conclusion, we demonstrate that the synergistic integration
of a highly scalable, compact three-linked-sphere robot with
model-free reinforcement-learning control can enable adaptable,
autonomous navigation in both unconfined and confined
environments. The three-linked-sphere robot uses a simple,
one-degree-of-freedom actuation that can be miniaturized to a
subcentimeter scale. For example, in contrast to COTS, the size
of the actuator can be significantly reduced using piezoelectric
and shape memory alloy[44–46] and recently developed 3D-printed
actuators, which use shape memory polymers, hygroscopic and
thermal-responsive composite hydrogels, liquid crystal elasto-
mers, and magnetic composite materials to produce soft robots
with tailored deformation.[47,48] The integration with recent work
in advanced manufacturing for electronics, such as with 3D
printing,[49–54] or conformal electronics[43,55] can be used to

reduce the footprint of the electronics packaging (e.g., by distrib-
uting the components with freeform, 3D interconnects,[56–58]

printed active electronics,[41,59] and printed batteries[60–62]).
Another future direction to develop the robot’s ability to navi-

gate confined spaces, including the human body, is to incorpo-
rate sensors that can provide feedback to the Q-learning
algorithm without requiring a visual connection. The
three-linked-sphere robot could be localized through nonvisual
means[63,64] such as magnetics[65,66] and radio.[67] We anticipate
that untethered robots with these features may be used for
long-term monitoring, noninvasive surgery, and targeted thera-
pies in previously inaccessible, confined environments in the
human body.

5. Experimental Section

Robot Design: The three-linked-sphere robot consists of three equally
sized spheres that are linearly coupled with two prismatic joints (see
Figure 1). The body of each sphere was 3D printed from polyvinyl acrylate
(PLA, Ultimaker 3) and thermoplastic polyurethane (TPU, Ultimaker 3),
and the joints were 3D printed from photocurable resin (Clear Resin,
FormLabs Form 3). The 64mm spheres contained microcontrollers
(ESP WROOM-32) and custom circuit boards for robot control and com-
munication, batteries (1S LiPo, Turnigy Nano-tech), and linear actuators
(PQ12, Actuonix). Tungsten powder was added to each sphere to make a
heavy ballast for added stability. The top of each sphere was marked with a
circle of acrylic paint for vision tracking by an overhead camera. During
experiments, the microcontrollers within the robot controlled the pris-
matic joints and communicated via Bluetooth with an external computer
which performed the visual tracking and reinforcement learning.

Experiment Setup and Terminology: For unconfined experiments, the
robot was placed on a horizontal, level surface, including ultra-high molec-
ular weight polyethylene or aluminum slotted rail. For confined experi-
ments, the robot was placed inside one end of a clear acrylic tube
(tube diameter was 109% of robot sphere diameter), which was rigidly
fixed to the table surface. Across all experiments, lighting was adjusted
to facilitate visual tracking, including through the clear tube’s surface.
A left-to-right convention was used in all experiments to define positive
displacement, and right to left for negative displacement.

Each robot state was assigned a name based on the joint location and
pose as follows: “L” left joint, “R” right joint, “E” extended, “C” contracted.
Thus, the state “LCRE” denotes the robot with the left joint contracted and
the right joint extended. The robot transitions through the four states
(LCRC, LCRE, LERC, LERE; see Figure 2) using 12 state-action pairs.
Each state-action pair represents a single stroke. During reinforcement
learning, the algorithm learns a sequence of strokes based on a
user-defined reward function.

Vision Tracking and Q-Learning: During each experiment, images of the
robot and surrounding area were captured using a DSLR camera (EOS
80D, Canon) rigidly mounted above the experiment. A circular polarizing
filter was used for the confined experiments to reduce the glare from the
curved acrylic tube (CIR 67mm, Tiffen). Images were sent to an external
computer, which performed image visual tracking and determined the next
step using a Q-learning reinforcement-learning algorithm. Commands to
perform the next step were then sent to the robot via Bluetooth.

Visual tracking was performed using a custom MATLAB script that
identified tracking markers (colored circles) on each sphere to determine
each sphere’s position. These positions were averaged to find the robot’s
center of mass, which was used as the position of the robot as a whole.
Images were captured at a rate of 24 frames per step, with information
from each image being used to calculate robot displacement for analysis.
The reinforcement learning algorithm used only the information from the
first image per step.

After each step, the Q-learning algorithm was updated and used to cal-
culate the next optimum state-action pair to be performed by the robot. At
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the beginning of the experiment, the Q-table values were initialized to
zero. Then, between each step, updates to the Q-learning algorithm con-
sisted of updating a matrix of 12 values, called a Q-table, whose rows rep-
resent the robot’s states and whose columns represent the three actions
that transition the robot from the current state to the other states. The
algorithm determined the following action by selecting the highest value
in the current state (matrix row). In a tie case, the algorithm selected the
tied action that appeared left-most in the matrix row.

The Q-table values were updated based on the policy shown in
Equation 1, where sn and an are the state and action, respectively, at step
n. In each experiment, the learning rate, α, and discount factor, γ, were
held constant at 1.0 and 0.9, respectively. The reward rn was calculated
as shown in Equation (2), where dn and dn�1 are the displacement of
the robot’s center of mass, normalized by the joint stroke length, at step
n and n� 1, respectively. Equation (2) was used for the gait adaptation
experiments (Figure 2) and during steps n¼ 0–149 of the goal adaptation
experiments (Figure 3,4), because it rewards movement in the left–right
direction. Equation (3) reverses the displacement reward, rewarding
right–left movement. The movement penalty remains the same. As such,
Equation (3) was used during steps n¼ 150–300 of the goal adaptation
experiments (Figure 3,4) to incentivize the robot to move right to left.

Qðsn, anÞ←Qðsn, anÞ þ α rn þ γmax
anþ1

Qðsnþ1, anþ1Þ �Qðsn, anÞ
� �

(1)

rn ¼ ðdn�dn�1Þ
20 � 0.25 (2)

rn ¼ � ðdn�dn�1Þ
20 � 0.25 (3)

The constants in Equation (2) and (3) were chosen to bring the reward
components to similar values. The displacement scalar, 1/20, converts the
displacement’s raw pixel value to �0.5–0.7, plus or minus a few tenths.
The movement penalty, �0.25, penalizes each movement, ensuring that
the robot views movement as an inherently costly action, though not to
overwhelm the reward from positive displacement. This means that the
robot is disincentivized from performing actions that avoid negative dis-
placement but do not achieve positive displacement. Combined with the
forward-looking algorithm in Equation (1), the Q value stabilized around
��0.4.

Robot performance was measured using the number of steps for policy
adaptation and average displacement rate. Policy adaptation—when the robot
learns a specific movement policy (e.g., F-stroke, N─G stroke)—was defined
as the period when the corresponding set ofQ values remains higher than all
other sets for n≥ 48 steps. This allows the robot the opportunity to explore all
12 state-action pairs four times. The first step at the beginning of this period
was used to define the number of steps required for policy adaptation. The
average displacement rate (d dL�1 n�1) was calculated from the displacement
curve (d dL�1) (see blue line in Figure 2), which was scaled by the stroke
length (dL).
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